ColdBox from Zero To Hero

Description

In this workshop you will be introduced to the latest version of the most popular CFML MVC framework;
ColdBox 5. We will go over the basics of installation, templating and configuration to the most advanced
features like HMVC development with modules, RESTFul APls, integration testing, interception points and
much more.

Prerequisites

e Latest CommandBox CLI (You don’t need to know how to use it.)
e MySQL GUI
o https://sequelpro.com
o https://www.heidisgl.com/
o https://sqlectron.github.io
e A local database server - We will be using MySQL 5.7 in the course. MAKE SURE IT IS 5.7. You can
start a local database service with docker using the following command if needed.

docker run -d \
--name soapbox
-p 33306:3306

-e MYSQL_ROOT_PASSWORD=root
-e MYSQL_DATABASE=soapbox
mysqgl:5

You can then stop and start the database server with "docker stop soapbox’ and "docker start soapbox.

Schedule / Outline

Project Overview

This course will focus on building a real twitter clone; SoapBox, based on different concepts and tool
methodologies. We will use ColdBox 5 features, including Behavior Driven Development (BDD)
testing and leveraging several ForgeBox modules.

1. Course Introduction

e [ntroductions
e Software Pre-Requisites


https://sequelpro.com/
https://www.heidisql.com/
https://sqlectron.github.io/

Course Expectations

2. App Skeleton

Scaffold a ColdBox Template using CommandBox
Build and configure the Test Harness

Build and configure Test Runners

CommandBox Test Watchers

3. Intro to ColdBox MVC

ColdBox.cfc Intro
Development Settings
Discovering application router
Handlers

What is the Request Context
Views/Layouts by convention
Reiniting your application

4. Layouts

Create a bootstrap theme layout for our app

5. Database Migrations

Intro to Migrations

Installation of migration modules

Migration Commands

Intro to CommandBox Environment Variables

Configure our environment variables

Creating and running our first migration

Configure application and test harness for database access
Setup Test Harness and Base Spec

6. Intro to Models

Scaffold a UsersService

Add our list story to our integration test

Implement the list() method to retrieve all users

Inject our UserService into our Main Handler

Call the list() method from our Main Handler and dump the data
Access the data returned from your main.index view.



7. Building the Registration Flow

e Create the registration spec
e Install berypt
e Write the registration code as a ColdBox resource with appropriate spec and model methods

8. Login & Logout Flow

Install cbomessagebox

Create the specs

Create routes

Create the User Sessions handler
Create the user login screen

Install cbauth

Scaffold a User model

Update User Service for cbauth usage
Update specs for login/logout actions
Update handlers for login/logout actions
Update layouts for login usage

Update spec for registration with auto-login
Create auto-login with registration
Customize Messagebox

Leverage Messagebox for messages

9. Rants

What we will do:

Create new migration for rants

Scaffold a rant resource

Update the resource route

Update the Rant object

Update the Rantservice

Create the basic unit tests for both and talk about pragmatism of unit test vs bdd
Build and Test the CRUD setup.

Change application default event to the rants

Update the main layout for adding a rant

10. Security

e Installing cbsecurity
e Create the security rules
e Update the User Service for user validation



Confirm security

11. View User Rants

Create the spec for the profile page

Add routes for the profile

Update the rant service to get rants per user
Create the handler

Create a reusable viewlet for our rants

12. Add Rant Actions

Create the migrations for bumps and poops
Scaffold a Reaction Service for the actions
Update Rant object for reactions

Update Tests

Update the rant viewlet

Learn about Wirebox Convention vs Configuration

13. Make Reactions Functional

Update the viewlet

Showcase HTML Helper and its usages

Create spec for tracking bumps in the User and ReactionService
Create the get reaction methods in the reaction service

Create the hasReaction methods in the user

Create new routes and handlers

Create the integration tests

Implement the handlers



